
Reviews in Clinical Gerontology 2007 17; 225–239 First published online 30 June 2008
C© 2008 Cambridge University Press Printed in the United Kingdom doi:10.1017/S0959259808002530

Brain aging research
David R Riddle1,2,3 and Matthew K Schindler2

1Department of Neurobiology and Anatomy, 2Program in Neuroscience, and 3J. Paul Sticht Center on Aging,
Wake Forest University School of Medicine, Winston-Salem, NC, USA

Introduction

The last three decades produced a striking increase
in investigations of the neurobiological basis of
brain aging and aging-related changes in neural
and cognitive function. Experimental and clinical
studies of aging have become more valuable
as the population, at least in industrialized
countries, has become ‘greyer’. The increase
in adult life expectancy that occurred in the
twentieth century produced the motivation and
necessity to invest resources in increasing ‘health
span’ as well as lifespan, in order to maximize
quality of life and minimize the financial and
social burdens associated with disability in the
later years of life. Specific interest in the aging
nervous system is driven by recognition that
increased longevity has little appeal for most
people unless it is accompanied by maintenance
of cognitive abilities. Indeed, surveys of older
individuals routinely show that loss of mental
capacity is among their greatest fear. In recent
years, neuroscientists and gerontologists, with a
variety of training and experimental approaches,
have applied increasingly powerful quantitative
methods to investigate why neural function
declines with age. New animal model systems have
been developed and old ones have become better
characterized and standardized. The necessary and
important descriptive studies that dominated the
field in earlier years are increasingly supplemented
by more hypothesis-driven research, resulting in
sophisticated investigations and models of the
mechanisms of brain aging. This review provides
a selective overview of recent and current research
on brain aging. The focus throughout will be on
normal brain aging and the moderate cognitive
changes that often accompany it, not on aging-
related neurodegenerative diseases that result in
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dementia. To provide a context for studies of
neurobiological changes in the aging brain, a
brief overview of the types of cognitive changes
that are commonly seen in aging humans is first
provided. The remainder of the review focuses on
animal studies that are progressively overcoming
the unique challenges of aging research to reveal
the neurobiological mechanisms of aging-related
cognitive dysfunction, and suggest new targets
for therapies to prevent or ameliorate cognitive
decline.

Cognitive changes in aging

The range of cognitive changes that occur with
aging suggests that aging-related neurobiological
changes are not limited to restricted neural regions,
as occurs with some aging-related neurological
diseases, but rather affect many and disparate
areas of the brain. Nevertheless, variation among
individuals in the types and extent of aging-related
cognitive changes demonstrates that deficits in
specific functions, mediated by different neural
regions, can develop to some extent independently.
The nature and range of aging-related cognitive
deficits in humans has been well-described in a
recent review and is discussed here only briefly.1

Basic cognitive functions, such as attention and
memory, can be significantly affected by aging
but, in both cases, some aspects are typically
maintained while others decline. Although there
is variation across studies, selective attention and
the ability to sustain attention appear to be well
maintained across aging.2,3 Reports of aging-
related deficits in visual-attention tasks and other
measures of attention (such as the Stroop task)
may be due to a general decline in the rate of
information processing rather than specific deficits
in selective attention.4 Although selective attention
is maintained, many older individuals have
deficits in tasks that require attention-switching
or attending to and processing information from
multiple sources of information.5,6 Such deficits
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appear to be reversible to some extent by training
and even by exercise,7 although it is not clear
whether such improvements involve reversal of
neurobiological changes that led to the deficit or
development of alternative strategies.

Deficits in memory are probably the aging-
related change most commonly recognized by
aging individuals and most widely investigated
by experimental gerontologists.8 With respect to
long-term memory,1 aging significantly affects
memory for specific events (episodic memory)
whereas some other aspects of long-term memory,
such as procedural memory, are well maintained.
Clearly, many older individuals exhibit deficits in
reorganizing and integrating information held in
working memory.9–11 Such dysfunction may not
necessarily reflect a problem with working memory
per se, but rather may be one manifestation of
aging-related problems in executive control. This
range of neural processes is involved in allocating
attention, inhibiting irrelevant information, direct-
ing problem-solving, and essentially planning and
coordinating neural activities related to cognitive
functions.2,12,13 These executive activities depend
critically upon the proper function of the pre-
frontal cortex and its reciprocal connections with
other cortical regions.14 The prominence of aging-
related changes in executive function, coupled
with prominent changes in frontal cortex that are
evident in imaging and postmortem analyses of the
human brain, are consistent with hypotheses that
executive control deficits arising from changes in
the frontal lobe explain much of cognitive aging.15

It is clear, however, that changes in other neural
regions, such as the hippocampus, contribute as
well (see below).

Investigating the mechanisms of aging-related
cognitive decline

The careful elucidation of aging-related cognitive
deficits in humans is critical for understanding
the problems faced by older adults, but human
studies provide only limited ability to investigate
underlying neurobiological mechanisms. Until
recently, investigations of neuroanatomical and
neurochemical changes associated with human
cognitive decline were limited to postmortem
analyses. The final state of the brain could
be assessed in detail but changes occurring
as cognitive deficits developed could not. With

advances in brain imaging it now is possible to
assess structural changes in individual brains as
they age,16–18 and also to investigate aging-related
changes in cerebral blood flow.19,20 Moreover,
developments in magnetic resonance (MR)
spectroscopy and positron emission tomography
now permit analysis of metabolic changes and
alterations in neurotransmitters and their receptors
in vivo.21–26

Despite such advances, experimental studies of
the mechanisms of brain aging depend extensively
on the use of animal models, particularly non-
human primates and rodents. In the US, the
importance of primate and rodent models has been
recognized with extensive and critical financial
support from the National Institute on Aging.27

Clearly, one important consideration in the use of
animal models is the extent to which they undergo
aging-related cognitive changes that are similar
to those that occur in humans. Rhesus monkeys
have an extensive behavioral repertoire and can
be trained in many tasks that assess memory
and executive function in a manner analogous to
human studies. Rhesus monkeys show very similar
deficits in memory and executive function28,29 and,
as in humans, the extent of cognitive dysfunction
varies among individuals.30,31 Although it is more
difficult to relate cognitive changes in humans
to cognitive changes in rodents, learning and
memory can be readily assessed using a variety of
maze and other tasks.32–35 Similarly, methods now
have been developed for testing executive function
in mice and rats and demonstrate clear aging-
related decline in such frontal cortex-dependent
tasks.36–38 The demonstration that aging-related
cognitive dysfunction is similar in humans and
rodents has made it possible to claim the many
experimental advantages provided by the latter,
including the use of powerful molecular genetic
techniques in mice.39–41 Thus, it is to studies
in monkeys and rodents that we owe much of
the current understanding of the mechanisms of
normal brain aging.

Structural changes in the aging brain

Even a cursory comparison of histological sections
or brain images from a young adult versus an aged
individual makes it clear that the structure of the
human brain changes with age, even in the absence
of neurodegenerative disease. Typically, the aged
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brain exhibits regionally-specific reduction in the
volume of both grey and white matter.42,43

Consistent with the view that functions mediated
by the frontal lobes are particularly affected, the
frontal cortex often appears most dramatically
changed in imaging studies and those changes are
most strongly correlated with cognitive deficits in
individuals.44,45 Although neurons clearly are lost
in some regions in some species, it does not appear
that normal brain aging involves extensive loss
of neurons (as was once thought), not even in
the frontal cortex and hippocampus, where the
executive and memory functions most affected by
aging are regulated. Contemporary stereological
studies have established that, in contrast to
Alzheimer’s disease, there is not extensive and
widespread loss of neurons in the normally aging
brain, even in individuals with demonstrated
cognitive impairment.46–51

Aging-related changes appear to involve signi-
ficant changes in the neuropil and white matter,
with alterations in both axons and dendrites. White
matter and axonal changes include reductions in
the total length of myelinated fibers and apparent
loss among fibers of the smallest diameter,52–54

as well as changes in myelin structure that may
compromise neuronal transmission.54,55 Several
laboratories have reported that neurons in the
aging brain undergo a reduction in dendritic
length and complexity, as well as a decrease in
the density of dendritic spines.49,56–60 Changes in
dendritic extent are not ubiquitous, however, but
rather vary among and within neural regions13,61,62

(Figure 1). Loss of dendritic spines may be more
widespread.

Significantly, even within the dendritic arbors
of individual neurons some components undergo
aging-related regression while other components
are maintained,63 indicating that changes in
dendrites are regulated very focally and may
affect specific populations of inputs onto individual
neurons.

Since dendritic spines are the primary targets
for excitatory synapses,64 one would expect loss
of dendrites and spines to be associated with
a decrease in synaptic number. As for neuronal
loss, however, stereological investigations have not
supported early reports that there is widespread
and dramatic loss of synapses in the aging brain.
Stereological analyses of the hippocampus revealed
loss of synapses in the dentate gyrus,65,66 but the
loss appears to involve only subsets of synaptic

inputs.67–69 Synaptic density appears to be largely
maintained across aging in other sub-regions of the
hippocampus,32 although synapses in CA1 may
undergo a small and selective decline.70 Analyses
of aging-related changes in synaptic number in the
cerebral cortex are mixed, even when considering
only the frontal cortex, suggesting any changes
in synaptic number are restricted in scope and
magnitude.71–73 Even in regions in which synapse
number is maintained, aging-related changes in
dendritic architecture could produce significant
rearrangements in the pattern of synaptic inputs on
to individual neurons and thereby alter neuronal
function.

Aging-related changes in synaptic function

Significant aging-related changes in synaptic
transmission and plasticity occur in many neural
regions in which there is no apparent loss of
synapses or change in their structure, indicating
that aging alters aspects of synaptic organization
and function that do not have apparent structural
correlates.74–77 Many investigations of the synaptic
changes that underlie aging-related cognitive
deficits have benefited from recognition that
individual rodents and non-human primates, like
humans, exhibit varying degrees of aging-related
cognitive dysfunction. Gallagher and colleagues
have demonstrated repeatedly that individual
aged rats can be classified as impaired or
unimpaired on a number of cognitive tasks,
including the hippocampally dependent Morris
Water Maze32,33,78 and measures of frontal cortical
function.79 Importantly, impaired individuals
show deficits across multiple cognitive domains
mediated by different neural regions.80 Such
evidence that individuals showing less successful
aging are impaired on multiple tasks provides
confidence that, although many structural changes
are restricted to specific sub-regions of the
aging brain, some mechanisms contributing to
functional changes are represented more globally.
Experimentally, the ability to compare cognitively
impaired old rats to unimpaired rats of the same
age helps investigators differentiate neurobiolo-
gical changes that contribute to cognitive deficits
from aging-related changes that are unrelated to
function.

Regardless of whether demonstrated specifically
in individuals with demonstrably impaired
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Figure 1. Neuronal labelling and analysis of dendritic extent. A dye-injected, superficial pyramidal neuron is shown (A)
with its reconstructed dendritic arbor (B). Scale bar = 40 µm. C, D and E illustrate the dendritic arbors of representative
pyramidal neurons from the cingulate cortex of rats at 8, 18 and 28 months of age and demonstrate the decrease in
dendritic extent between middle- and old age. Quantitative analysis revealed a 20–25% decrease in dendritic extent
for superficial pyramidal neurons, whereas neurons in deeper layers were unchanged.63

cognitive function or simply by comparing animals
of different ages, recent studies have provided a
wealth of information on how and why synaptic
signalling changes with age. Even a cursory
overview of the range of synaptic and related intra-
and intercellular changes is beyond the scope of this
review, but a summary of demonstrated changes
in a single neurotransmitter system illustrates the
growing sophistication of analyses of synaptic
changes.

Glutamate and its receptors mediate the
majority of excitatory neurotransmission in the
CNS and are critical for neuronal signalling that
underlies learning, memory, and other cognitive
functions. Glutamate levels have been reported
to decline in the aging cerebral cortex and
hippocampus, but that change may be more
related to metabolic activity than to synaptic
transmission.81 The most significant aging-related
changes in glutamate signalling appear to arise
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from many and varied changes in glutamate
receptors. Glutamate signals through multiple
receptors of two general classes, ionotropic recept-
ors that form membrane-spanning ion channels
and signal through ion fluxes, and metabotropic
receptors that signal through intracellular second
messenger systems. Each receptor type in each
class comprises multiple sub-units.82,83 Changes
in glutamate signaling through the ionotropic N-
methyl D-aspartate (NMDA) type receptor appear
to underlie many changes in neural function and
for detailed descriptions of aging-related changes
in glutamate and NMDA signalling readers are
directed to recent focused reviews.59,81,82,84–88 In
brief, NMDA receptors are expressed at high
levels in the cerebral cortex and hippocampus and
play critical roles in learning and memory and
in many plasticity processes. Selective blockade of
NMDA receptors impairs performance on memory
tasks that are affected by aging. Several studies
have demonstrated a correlation between lower
densities of NMDA receptor-binding and poor
memory performance. The density of NMDA
receptors is reduced in some areas of the aging
brain, but such changes are region-specific. In
addition to the many changes in NMDA receptor
function, metabotropic glutamate receptors also
undergo aging-related changes in expression and
ligand-binding that contribute to changes in their
function.89–91

For both classes of glutamate receptors, changes
in the expression and balance of specific receptor
subunits and alterations in the insertion of
receptors in the post-synaptic membrane alter
function even in the absence of changes in overall
numbers of receptors. In addition, intracellular
pathways that are coupled to the receptors undergo
significant aging-related changes that blunt or alter
the fidelity of signalling.87,92,93 Thus, even if one
considers only the receptors for a single neur-
otransmitter, one finds abundant substrates for
physiological and pathophysiological regulation
that influences neural processing and cognition
during aging.

Fundamental mechanisms of brain aging –
oxidative stress and inflammation

The breadth of aging-related neurobiological
changes – including alterations in many different
neuron types and changes in some structural

properties and many inter- and intracellular signal-
ling pathways – raises the question of whether
a small number of cellular and molecular
regulators could underlie the variety of structural
and functional changes that result in cognitive
deficits. Accumulating evidence indicates that
two important and related changes in the
microenvironment within the brain contribute to
many of the cellular and intercellular changes that
occur with aging: progressive increases in oxidative
stress and neuroinflammation.

Oxidative damage increases with age,94–97 due
to increased generation of reactive oxygen species
(ROS), decreased anti-oxidant activity, and/or
deficient mechanisms to prevent or repair cell
and tissue damage. It is not clear whether anti-
oxidant mechanisms and repair mechanisms are
significantly impaired with age in all tissues,98

but the levels of key antioxidant enzymes clearly
decline in some regions of the brain,99–101

possibly contributing to increased oxidative
damage.96,102–104 There is evidence for a close
association between oxidative stress and aging-
related functional decline in some tissues,95

with oxidative stress inducing greater DNA
and protein damage in older animals.105,106

The increase in damaged proteins appears to
be regionally specific, with the hippocampus
exhibiting a twofold greater increase in oxidative
damage than cortical structures.95 Importantly,
increased oxidative stress has been associated
directly with impairments in motor and cognitive
performance.95,107 In addition, interventions that
reduce oxidative damage (e.g. moderate caloric
restriction, high antioxidant diets, or spin trapping
agents) prevent or reverse some behavioral deficits
observed in aged animals.96,108–110

It is reasonable to expect that increased
oxidative stress would affect cellular structure and
a wide variety of cellular and intercellular pro-
cesses, since essentially all macromolecules in
the brain – proteins, lipids and nucleic acids –
are subject to oxidative damage. Moreover, recent
studies have begun to reveal additional and
dynamic effects of the imbalance between ROS and
antioxidant defenses in the aged brain. Oxidative
conditions affect a variety of redox-sensitive
signalling processes, including the insulin-receptor
signalling pathways. These pathways influence
neurodegenerative processes and normal brain
aging,111,112 and may even influence lifespan.113

Thus, oxidative stress in the aging brain appears to
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affect multiple and complex regulatory networks
within the brain.

Much of the aging-related increase in oxidative
stress is likely to be an unavoidable result of
metabolic processes, but ROS also are produced
as part of neuroinflammatory processes that
increase with age. Accumulating evidence suggests
a loss of balance between pro- and anti-
inflammatory signals that contributes to loss of
neural function. Elevations in pro-inflammatory
markers commonly are found in the CNS of healthy
older people and laboratory animals.114–118 Indeed,
gene array studies screening for neural genes with
altered expression in the aging brain found that a
large percentage of the genes that showed an age-
related alteration in expression were involved in the
inflammatory response or in regulating oxidative
stress.119,120 More targeted studies demonstrated
an age-dependent increase in transcription of
the pro-inflammatory genes TNF-α, IL-1β, and
MCP-1 in the hippocampus of old versus young
adult mice.121 Importantly, altered regulation of
inflammatory gene expression in older rodents was
associated with age-related cognitive impairment;
in cognitively impaired old rats expression was
altered but in unimpaired old rats expression
was similar to that in young adults.107 The gene-
expression studies are supported by evidence that
basal levels of pro-inflammatory proteins are
increased in the brains of old rodents compared
to young.122–124

In addition to these molecular and biochemical
studies, cellular effects of aging on inflammatory
processes in the brain are demonstrated by changes
in microglia, the cells that initiate and direct
the inflammatory response in the CNS. In the
absence of pro-inflammatory stimuli, microglia are
characterized morphologically by the presence of
long, thin, and ramified cellular processes and
often are referred to as ‘resting’. Resting is a poor
descriptor, however, since these microglia actively
monitor their microenvironment125–127 via a wide
variety of cell-surface receptors.128–131 Microglia
respond to chemical, physical, infectious, and
other factors that signal or may cause damage
with morphological changes, including partial
retraction and thickening of the cellular processes
and rounding of the cell body, and functional
changes, including migration, proliferation, and
the production and secretion of pro-inflammatory
proteins.132 In the adult brain, the pro-
inflammatory cytokines produced by activated
microglia influence neurogenesis,133–135 long-term

potentiation (LTP),136 and cognition.137,138 The
importance of such changes for aging-related
cognitive decline is supported by demonstrations
that age-related impairments in LTP and cognition
correlate with increased levels of IL-1β, increased
numbers of activated microglia, and decreased
levels of the anti-inflammatory cytokines IL4 and
IL10.136,139–141

Immunohistochemical studies have demon-
strated an increase in the number of activated mi-
croglia in the CNS of healthy, older rodents,142–145

non-human primates,146 and humans.147,148 Aging
apparently alters the functional state of microglia
but not their number,145,149 since significant
functional changes occur in individual cells with
little change in the size of the population.
The increase in microglial activation with
age is dramatic and easily demonstrated with
immunomarkers that target the phagocytic nature
of activated microglia or changes in cell surface
receptors (Figure 2). It remains a major challenge,
however, to characterize specifically the functional
changes in microglia in specific regions of the aging
brain. This is a critical issue in light of accumulating
evidence that, depending on their functional state
and the factors acting upon them, microglia may
have trophic actions that support neuronal survival
and function,127,150–154 as well as deleterious
effects on neurons and other cells. Transgenic
mice with fluorescently tagged microglia offer
significant promise for detailed analyses of cellular
and molecular changes in activated microglia,155

permitting comparisons among neural regions
with greater and lesser degrees of aging-related
functional changes.

Ameliorating aging-related cognitive decline

Evidence that oxidative stress and inflammatory
processes underlie many aging-related functional
changes in the brain makes these processes
attractive targets for therapies to prevent or reverse
aging-related cognitive decline. In animal models,
diets that are rich in anti-oxidants have proven
effective in ameliorating some cognitive deficits
in older animals (see recent reviews110,152,156–159).
Anti-inflammatory treatments can decrease the
number of activated microglia in the brain and also
partially restore the age-dependent impairment
in LTP136 and spatial memory performance.137

Similarly, inhibition of the enzyme responsible
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Figure 2. Aging-related increase in activated microglia and in the inflammatory response to brain irradiation. Activated
microglia can be identified using the ED1 monoclonal antibody , which recognizes a lysosomal protein (CD68) that is
upregulated when microglia become activated. ED1+ microglia are rare in the brain of a young control rat but increase
in abundance with age (top row). A single 10 Gy dose of whole-brain irradiation produces only a modest activation
of microglia in the young brain (left column) but a much greater and sustained activation in middle-aged and old rats
(middle and right columns). ED1 labelling is shown in the corpus callosum (CC), cingulum and deep cerebral cortex,
but similar changes are seen throughout the brain.145

for activating IL-1β improves age-related memory
dysfunction.135

Although such animal studies indicate that
antioxidant and anti-inflammatory therapies might
limit aging-related cognitive deficits, evidence
that oxidative damage and pro-inflammatory
conditions in the human brain accumulate
over many years raise the critical question of
whether it would be necessary to begin therapies
early in life to derive benefits. Animal studies
demonstrate that supplementation with dietary
antioxidants for as little as 2–4 months can
reduce normal aging-related cognitive deficits in
rodents.160,161 As yet, however, interventional
studies of antioxidant supplementation in humans
have largely failed to demonstrate benefits for

cognitive function,162–164 despite observational
evidence of an association between nutritional
intake of antioxidants and cognitive function in
healthy elderly individuals.165,166 Presently, there
may be more translational relevance and clinical
potential in studies demonstrating that antioxidant
and anti-inflammatory treatments are efficacious in
preventing or decreasing the effects of potentially
damaging challenges, to which the aged brain is
particularly vulnerable.167,168

Increased vulnerability to damage in the aging
brain

Clinical experience and anecdotal and experi-
mental evidence indicate that older individuals
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have greater difficulty recovering from events
that challenge the homeostatic mechanisms of
the brain. Significantly, such challenges typically
induce oxidative stress and/or inflammation, and
many are common among older individuals.
For example, postoperative cognitive dysfunction
is more common in older than in younger
adult patients, even in the absence of adverse
intraoperative events.169–171 As this problem has
become more recognized clinically, experimental
studies are beginning to investigate the underlying
mechanism172,173; oxidative stress and inflammat-
ory effects almost certainly may play an important
role. Clinical and experimental studies of stroke,
traumatic brain injury, axotomy, and whole-
brain irradiation all support the hypothesis that
aging impacts the intensity and duration of brain
inflammation and microglial activation following
challenges145,147,174,175 (Figure 2). Functionally,
old age alters the duration of radiation-induced
cognitive deficits in rodents,176,177 and clinical
studies have identified increased age at the time
of irradiation to be a risk factor for development
and severity of radiation-induced cognitive side-
effects.178–181

Such differences between young adult and older
brains indicate that the neural effects of potentially
damaging challenges may be quantitatively greater,
and even mechanistically different, in middle-
aged and elderly patients, presumably because
older brains are in a chronic state of oxidative
stress and inflammation (discussed in Schindler
et al145). Microglia often exhibit an increased
response to an acute inflammatory event when the
event was preceded by a previous inflammatory
stimulus; in the CNS such microglial ‘priming’
may even involve interactions between the
systemic and parenchymal immune systems.182–186

Microglia in the aged brain may be primed to
produce an exaggerated response to any pro-
inflammatory and pro-oxidative stimulus, such
that a challenge that produces no significant
functional effects in young individuals elicits a
feed-forward and progressive oxidative stress and
neuroinflammatory response that impairs neuronal
function in elderly individuals. Thus, even if
treatment with antioxidant and anti-inflammatory
factors does not improve basal cognitive function
in the aging and aged, it may provide protection
from the additional cognitive deficits that often
result from the inevitable neural challenges that
are associated with growing older.

Ongoing and future studies

As the survey above demonstrates, there has been
tremendous progress in (1) elucidating elements
of cellular structure and intercellular signalling
that are compromised in the aging brain and (2)
developing evidence that increased oxidative stress
and neuroinflammation are critical contributors to
the neurobiological changes that result in cognitive
dysfunction. A primary focus now and in future
studies is revealing the mechanistic pathways
through which oxidative stress and inflammation
alter neurotransmitter receptors, synapses, and
neuronal processes.187 These mechanistic links are
beginning to be revealed. For example, tumor
necrosis factor-alpha (TNF-α) interleukin 1-beta
and interleukin 18 all inhibit LTP, and TNF-α
alters expression of metabotropic glutamate recept-
ors and potentiates glutamate excitotoxicity.188,189

TNF-α also inhibits neurite outgrowth and
thereby may limit recovery following neuronal
damage.190 Interferon-alpha suppresses NMDA
signalling191 and interleukin-6 produces subunit-
specific reductions in metabotropic glutamate
receptors.192 Microglia can influence a variety of
synaptic properties193 and, under some conditions,
activated microglia can even strip synapses from
neurons.194

The continued revelation of the influence of
oxidative stress and inflammation on the structural
and functional mediators of aging-related cognitive
decline should produce new targets for developing
therapies to ameliorate aging-related cognitive
dysfunction and more refined assays to test those
therapies and promote their translation to the
clinic.
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